Axial Caldera

Map of Axial Caldera showing the location of RCA core infrastructure and instrumentation, and PI-provided instrumentation in 2024. Credit: D. Kelley, University of Washington.

Axial Seamount, on the Juan de Fuca spreading center, is an optimal site for a long-term observatory. It is located just one day by ship from the Washington and Oregon coasts and it is one of the main experimental sites on the Regional Cabled Array. Axial Seamount was chosen as a key observatory site because it is the largest and most magmatically robust volcano on the spreading center, having erupted in 1998, 2011, and again April 24, 2015. It hosts numerous active hydrothermal fields and abundant sites of diffuse flow (Kelley et al.,2014). It is the most advanced volcanic observatory in the worlds’ oceans: Over 20 instruments now stream data at the speed of light to shore for a global audience to use.

Basaltic arches mark zone of collapse in a flow channel for the April 2014 eruption at Axial Seamount. Credit: UW/OOI-NSF/CSSF; V14.

On August 8, 2014, all secondary infrastructure (cables, junction boxes and instruments) were connected to Primary Node PN3B and powered up.  The node provides power and communication to five Medium Power J-Boxes that allow access to the ASHES and International District hydrothermal vent fields and to the Central and Eastern Caldera Sites. Real-time high definition video now streaming to shore provides unprecedented views of macrofaunal and microbial communities at the vents.  Chemical sensors and thermistor arrays are providing real-time information on the environmental conditions in which the biological communities thrive.

Tube worms thrive on the side of the active >270°C vent called Inferno in the ASHES vent field. Credit: UW/OOI-NSF/WHOI; V19.

The instrumentation will also new insights on the impact of flow perturbations associated with eruptive and seismic events on biological communities. Other sensors now installed include an situ mass spectrometer for fluid – volatile chemistry, broadband and short-period seismometers to monitor earthquake and magma migration activity, temperature and chemical probes in diffuse and black smoker sites, fluid and DNA samplers.  The in situ DNA sampler is initially focused on in-situ filtering and preservation of time series samples in the El Gordo diffuse flow site.

The broadband and short-period seismometers detected >8000 earthquakes marking the start of the April 24, 2015 eruption and real-time data flow from bottom pressure-tilt meters documented live the collapse of the volcanoes caldera in 24 hrs during this same period. The instrument array at Axial, now fully installed, is the largest single in situ experiment in the global ocean focused on long-term measurements of underwater volcanoes with transmission of real-time data and imagery back to shore. Seismic data are now available through IRIS (over 700 users have now accessed these data), live inflation and deflation plots are provided by W. Chadwick at OSU-NOAA-PMEL, and other instrument data are available through the OOI Data Portal.

 

AXIAL SEAMOUNT RELATED PUBLICATIONS

Acocella, V., M. Ripepe, E. Rivalta, A. Peltier, F. Galetto, and E. Joseph (2023), Towards scientific forecasting of magmatic eruptions, Nature Reviews Earth & Environment. doi:10.1038/s43017-023-00492-z.

Arnulf, A., Harding, A., & Kent, G. (2018), Three-dimensional P-wave velocity structure of axial volcano on the Juan de Fuca ridge (investigators: Adrien F. Arnulf, Alistair Harding, Graham Kent). Palisades, NY: Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/324420

Arnulf, A., Harding, A., Kent, G., & Wilcock, W. (2018), Hypocentral earthquake estimates of seismic events recorded on Axial Seamount from January, 2015 through November, 2015 (investigators: Adrien F. Arnulf, Alistair Harding, Graham Kent, William Wilcock). Palisades, NY: Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/324421

Arnulf, A. F., Harding, A.J., Kent, G.M., and Wilcock, W.S.D. (2018), Structure, seismicity, and accretionary processes at the hotspot-influenced Axial Seamount on the Juan de Fuca Ridge, J. Geophys. Res., 123, doi:10.1029/2017JB015131.

Baillard, C., & Wilcock, W. S. D. (2019), Three-dimensional P- and S-wave velocity models for Axial Seamount from a joint inversion of earthquake arrival times for velocity and hypocentral parameters, Interdisciplinary Earth Data Alliance. https://doi.org/10.1594/IEDA/324821

Baillard, C., & Wilcock, W. S. D. (2019), Catalog of earthquakes at Axial Seamount relocated with three-dimensional P- and S-wave velocity models from a joint inversion of earthquake arrival times for velocity and hypocentral parameters, Interdisciplinary Earth Data Alliance. https://doi.org/10.1594/IEDA/324822

Baillard, C., Wilcock, W.S.D., Arnulf, A. F., Tolstoy, M. & Waldhauser, F. (2019), A joint inversion for three‐dimensional P and S wave velocity structure and earthquake locations beneath Axial Seamount, Journal of Geophysical Research: Solid Earth, 124, 12997–13020, doi:10.1029/2019JB017970.

Baker, E. T., S. L. Walker, W. W. Chadwick, Jr., D. A. Butterfield, N. J. Buck, and J. A. Resing (2019), Post-eruption enhancement of hydrothermal activity: A 33-year, multi-eruption time-series at Axial Seamount (Juan de Fuca Ridge), Geochem. Geophys. Geosyst., 20, 814-828, doi:10.1029/2018GC007802.

Barkat, A., Y. J. Tan, G. Xu, F. Waldhauser, M. Tolstoy, and W. S. D. Wilcock (2024), Permeability and seismicity rate changes at an inflating submarine volcano caused by dynamic stresses, Earth Planet. Sci. Lett., 632, 118625, doi:10.1016/j.epsl.2024.118625.

Biasi, J., M. Tivey, and B. Fluegel (2022), Volcano Monitoring with Magnetic Measurements: A Simulation of Eruptions at Axial Seamount, Kīlauea, Bárðarbunga, and Mount  Saint Helens, Geophys. Res. Lett., 49, e2022GL100006, doi:10.1029/2022GL100006.

Cabaniss, H. E., P. M. Gregg, S. L. Nooner, and W. W. Chadwick Jr. (2020), Triggering of eruptions at Axial Seamount, Juan de Fuca Ridge, Scientific Reports, 10, 10219, doi:10.1038/s41598-020-67043-0.

Caplan-Auerbach, J., R. P. Dziak, J. Haxel, D. R. Bohnenstiehl, and C. Garcia (2017), Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones, Geochem. Geophys. Geosyst., 18, 1761-1774, doi:10.1002/ 2016GC006734.

Carbotte, S. M., A. F. Arnulf, M. W. Spiegelman, M. Lee, A. J. Harding, G. M. Kent, J. P. Canales, and M. R. Nedimović (2020), Stacked sills forming a deep melt-mush feeder conduit beneath Axial Seamount, Geology, 48, doi:10.1130/G47223.1.

Chadwick, W. W., Jr. (2018), High Temperature time series raw data from Axial Seamount, Juan de Fuca Ridge, acquired during the Axial 2017 Revelle cruise RR1712 (investigator William Chadwick). Interdisciplinary Earth Data Alliance (IEDA), doi:10.1594/IEDA/324412.

Chadwick, W. W., Jr., M. Cannat, D. Eason, M. L. Saout, and R. J. Carey (in press), Mid-Ocean Ridge Volcanism, in Encyclopedia of Volcanoes – 3rd edition – Chapter 2.3, edited by C. Bonadonna, Elsevier.

Chadwick, W. W., Jr., and S. L. Nooner (2015), Processed Bottom Pressure Recorder (BPR) data from uncabled instruments deployed at Axial Seamount on the Juan de Fuca Ridge (investigators William Chadwick and Scott Nooner). Integrated Earth Data Applications (IEDA). http://doi.org/10.1594/IEDA/322282

Chadwick, W. W., Jr., B. P. Paduan, D. A. Clague, B. M. Dreyer, S. G. Merle, A. M. Bobbitt, D. W. Caress, B. Philip, D. S. Kelley, and S. L. Nooner (2016), Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount, Geophys. Res. Lett., 43, 12,063–012,070, doi:10.1002/2016GL071327.

Chadwick, W., J. Paduan, D. Clague, B. Dreyer, S. Merle, A. Bobbitt, D. Caress, B. Philip, D. Kelley, and S. Nooner (2016), Interpreted outlines (version 1) as shapefiles of the 2015 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator William Chadwick). Integrated Earth Data Applications (IEDA). doi: http://dx.doi.org/10.1594/IEDA/323598.

Chadwick, W., J. Paduan, D. Clague, B. Dreyer, S. Merle, A. Bobbitt, D. Caress, B. Philip, D. Kelley, and S. Nooner (2018), Interpreted outlines (version 1) as ASCII points of the 2015 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator William Chadwick). Integrated Earth Data Applications (IEDA). doi: http://dx.doi.org/10.1594/IEDA/323600.

Chadwick, W. W., Jr., W. S. D. Wilcock, S. L. Nooner, J. W. Beeson, A. M. Sawyer, and T.-K. Lau (2022), Geodetic Monitoring at Axial Seamount Since its 2015 Eruption Reveals a Waning Magma Supply and Tightly Linked Rates of Deformation and Seismicity, Geochem. Geophys. Geosyst., 22, e2021GC010153, doi:10.1029/2021GC010153.

Clague, D. A., J. B. Paduan, D. W. Caress, W. W. Chadwick Jr., M. L. Saout, B. Dreyer, and R. Portner (2017), High-resolution AUV mapping and targeted ROV observations of three historical lava flows at Axial Seamount, Oceanography, 30(4), 82-99, doi:10.5670/oceanog.2017.426.

Clague, D., J. Paduan, D. Caress, W. Chadwick, M. Le Saout, B. Dreyer, and R. Portner (2018), Interpreted outlines (version 2) as ASCII points of the 2015 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator David Clague). Integrated Earth Data Applications (IEDA). doi: http://dx.doi.org/10.1594/IEDA/324418

Clague, D. A., J. B. Paduan, B. M. Dreyer, W. W. Chadwick Jr., K. R. Rubin, M. R. Perfit, and A. T. Fundis (2018), Chemical variations in the 1998, 2011, and 2015 lava flows from Axial Seamount, Juan de Fuca Ridge: Cooling during ascent, lateral transport, and flow, Geochem. Geophys. Geosyst., 19, 2915-2933, doi:10.1029/2018GC007708.

Doran, A. K., and W. C. Crawford (2020), Continuous evolution of oceanic crustal structure following an eruption at Axial Seamount, Juan de Fuca Ridge, Geology, 48(5), 452–456, doi:10.1130/G46831.1.

Fine, I. V., R. E. Thomson, W. W. Chadwick Jr., and C. G. Fox (2020), Towards a universal frequency of occurrence distribution for open-ocean tsunamis: Statistical analysis of a 32-year bottom pressure record at Axial Seamount, Geophys. Res. Lett., 47(10), e2020GL087372, doi:10.1029/2020GL087372.

Fluegel, B., M. Tivey, J. Biasi, W. W. Chadwick Jr., and S. L. Nooner (2022), The Magnetization of an Underwater Caldera: A Time-Lapse Magnetic Anomaly Study of Axial Seamount, Geophys. Res. Lett., 49, e2022GL100008, doi:10.1029/2022GL100008.

Fortunato, C. S., B. Larson, D. A. Butterfield, and J. A. Huber (2018), Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids, Environmental Microbiology, 20, 769-784, doi:10.1111/1462-2920.14011.

Hefner, W., S. L. Nooner, W. W. Chadwick, Jr., and D. W. R. Bohnenstiehl (2020), Revised magmatic source models for the 2015 eruption at Axial Seamount including estimates of fault‐induced deformation, Journal of Geophysical Research: Solid Earth, 125(4), e2020JB019356, doi:10.1029/2020JB019356.

Jones, M., S. A. Soule, H. Gonnermann, V. L. Roux, and D. Clague (2018), Ascent and emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing, Earth Planet. Sci. Lett., 494, 32-41, doi:10.1016/j.epsl.2018.04.044.

Kent, G. M., A. F. Arnulf, S. C. Singh, H. Carton, A. J. Harding, and S. Saustrup (in press), Melt focusing along the lithosphere-asthenosphere boundary beneath Axial volcano, Nature

Le Saout, M., Bohnenstiehl, D. R., Paduan, J. B., & Clague, D. A. (2020). Quantification of eruption dynamics on the north rift at Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 21, e2020GC009136. https://doi.org/ 10.1029/2020GC009136

Le Saout, M., D. A. Clague, and J. B. Paduan (2022), Faulting and magmatic accretion across the overlapping spreading center between Vance Segment and Axial South Rift, Juan de Fuca Ridge, Geochem. Geophys. Geosyst., doi:10.1029/2021GC010082.

Lee, M. K., S. M. Carbotte, and A. F. Arnulf (2022), Detection of magma beneath the northern and southern rift zones of Axial Seamount at the Juan de Fuca Ridge, Geochemistry, Geophysics, Geosystems, 23, e2022GC010426, doi:10.1029/2022GC010426.

Lee, M. K., Y. J. Tan, J. B. Russell, M. Tolstoy, and F. Waldhauser (2024), Relative seismic velocity variations at Axial Seamount observed with ambient seismic noise capture transition point in volcanic inflation, Geophys. Res. Lett., 51, e2024GL108883, doi:10.1029/2024GL108883.

Levy, S., D. R. Bohnenstiehl, P. Sprinkle, M. S. Boettcher, W. S. D. Wilcock, M. Tolstoy, and F. Waldhauser (2018), Mechanics of fault reactivation before, during, and after the 2015 eruption of Axial Seamount, Geology, doi:10.1130/G39978.1.

Manalang, D., and J. R. Delaney (2016), Axial Seamount – Restless, Wired and Occupied: A Conceptual Overview of Resident AUV Operations and Technologies, Proceedings of the MTS/IEEE Oceans’16 Meeting, Monterey, California, September 19-23.

Mittelstaedt, E., D. J. Fornari, T. J. Crone, J. Kinsey, D. Kelley, and M. Elend (2016), Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements, Geochem. Geophys. Geosyst., 17, 1435–1453, doi:10.1002/ 2015GC006144.

Moyer, P. A., Boettcher, M. S., Bohnenstiehl, D. R., & Abercrombie, R. E. (2020). Crustal strength variations inferred from earthquake stress drop at Axial Seamount surrounding the 2015 eruption. Geophysical Research Letters, 47, e2020GL088447. https://doi.org/ 10.1029/2020GL088447

Mullet, B., and P. Segall (2022), The surface deformation signature of a transcrustal, crystal mush-dominant magma system, Journal of Geophysical Research: Solid Earth, 127, e2022JB024178, doi:10.1029/2022JB024178.

Nooner, S. L., and W. W. Chadwick, Jr. (2016), Inflation-predictable behavior and co-eruption deformation at Axial Seamount, Science, 354(6318), 1399-1403, doi:10.1126/science.aah4666.

Paduan, J. B., D. A. Clague, D. W. Caress, R. Portner, M. Le Saout, and B. Dreyer (in review), Voluminous Inflated Lobate Flows on the Distal Rift Zones Synchronous with Caldera Formation at Axial Seamount, Juan de Fuca Spreading Ridge, Geochemistry, Geophysics, Geosystems

Portner, R. A., D. A. Clague, C. Helo, B. M. Dreyer, and J. B. Paduan (2015), Contrasting styles of deep-marine pyroclastic eruptions revealed from Axial Seamount push core records, Earth Planet. Sci. Lett., 423, 219-231, doi:10.1016/j.epsl.2015.03.043.

Sasagawa, G. S., M. J. Cook, and M. A. Zumberge (2016), Drift-corrected seafloor pressure observations of vertical deformation at Axial Seamount 2013–2014, Earth and Space Science, 3, doi:10.1002/2016EA000190.

Scholz, C. H., Y. J. Tan, and F. Albino (2019), The mechanism of tidal triggering of earthquakes at mid-ocean ridges, Nat Commun, 10(2526), doi:10.1038/s41467-019-10605-2.

Sigmundsson, F. (2016), New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano, Geophys. Res. Lett., 43, doi:10.1002/ 2016GL071884.

Slead, S., M. Wei, S. L. Nooner, W. W. Chadwick Jr., D. W. Caress, and J. W. Beeson (2024), Compartmentalization of Axial Seamount’s magma reservoir inferred by analytical and numerical deformation modeling with realistic geometry, Journal of Geophysical Research: Solid Earth, 129(5), e2023JB028414, doi:10.1029/2023JB028414.

Spietz, R. L., D. A. Butterfield, N. J. Buck, B. I. Larson, W. W. Chadwick Jr., S. L. Walker, D. S. Kelley, and R. M. Morris (2018), Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and oceanic hydrosphere, Oceanography, 31(1), 128-135, doi:10.5670/oceanog.2018.120.

Stewart, L. C., C. K. Algar, C. S. Fortunato, B. I. Larson, J. J. Vallino, J. A. Huber, D. A. Butterfield, and J. F. Holden (2019), Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents, ISME Journal, doi:10.1038/s41396-019-0382-3.

Tan, Y. J., F. Waldhauser, M. Tolstoy, and W. S. D. Wilcock (2019), Axial Seamount: Periodic tidal loading reveals stress dependence of the earthquake size distribution (b value), Earth Planet. Sci. Lett., 512, 39–45

Tolstoy, M., W. S. D. Wilcock, Y. J. Tan, and F. Waldhauser (2018), A tale of two eruptions: How data from Axial Seamount led to a discovery on the East Pacific Rise, Oceanography, 31(1), 124-125, doi:10.5670/oceanog.2018.118.

Tontini, F. C., T. J. Crone, C. E. J. de Ronde, D. J. Fornari, J. C. Kinsey, E. Mittelstaedt, and M. A. Tivey (2016), Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites, Geophys. Res. Lett., 43, 6205-6211, doi:10.1002/ 2016GL069430.

Topçuoğlu, B.D., L.C. Stewart, H.G. Morison, D.A. Butterfield, J.A. Huber, and J.F. Holden (2016): Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol., 7, 1240, doi: 10.3389/fmicb.2016.01240.

Waldhauser, F., W. S. D. Wilcock, M. Tolstoy, C. Baillard, Y. J. Tan, and D. P. Schaff (2020), Precision seismic monitoring and analysis at Axial Seamount using a real‐time double‐difference system, Journal of Geophysical Research: Solid Earth, 125, e2019JB018796, doi:10.1029/2019JB018796.

Wang, K., F. Waldhauser, D. P. Schaff, M. Tolstoy, W. S. D. Wilcock, and Y. J. Tan (2024), Real-Time Detection of Volcanic Unrest and Eruption at Axial Seamount using Machine Learning, Seismol. Res. Lett.

Wang, K., F. Waldhauser, M. Tolstoy, D. P. Schaff, T. Sawi, W. S. D. Wilcock, and Y. J. Tan (2024), Volcanic precursor revealed by machine learning offers new eruption forecasting capability, Geophys. Res. Lett. , doi:10.22541/essoar.170365180.02276553/v1.

Wilcock, W. S. D., R. P. Dziak, M. Tolstoy, W. W. Chadwick Jr., S. L. Nooner, D. R. Bohnenstiehl, J. Caplan-Auerbach, F. Waldhauser, A. Arnulf, C. Baillard, T.-K. Lau, J. H. Haxel, Y. J. Tan, C. Garcia, S. Levy, and M. E. Mann (2018), The recent volcanic history of Axial Seamount: Geophysical insights into past eruption dynamics with an eye toward enhanced observations of future eruptions, Oceanography, 31(1), 114-123, doi:10.5670/oceanog.2018.117.

Wilcock, W. S. D., M. Tolstoy, F. Waldhauser, C. Garcia, Y. J. Tan, D. R. Bohnenstiehl, J. Caplan-Auerbach, R. P. Dziak, A. F. Arnulf, and M. E. Mann (2016), Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption, Science, 354(6318), 1395-1399, doi:10.1126/science.aah5563.

Wilcock, W. S. D., F. Waldhauser, and M. Tolstoy (2017), Catalogs of earthquake recorded on Axial Seamount from January, 2015 through November, 2015 (investigators William Wilcock, Maya Tolstoy, Felix Waldhauser). Interdisciplinary Earth Data Alliance. https://doi.org/10.1594/IEDA/323843

Xu, G., W. W. Chadwick Jr., W. S. D. Wilcock, K. G. Bemis, and J. R. Delaney (2018), Observation and Modeling of Hydrothermal Response to the 2015 Eruption at Axial Seamount, Northeast Pacific, Geochem. Geophys. Geosyst., 19, 2780-2797, doi:10.1029/2018GC007607.

Xu, G., Y. J. Tan, and W. W. Chadwick, Jr. (in review), Temporal variation of crustal permeability in relation to the volcano deformation cycle at Axial Seamount, northeast Pacific, Journal of Geophysical Research: Solid Earth

Yang, J., H. Zhu, Z. Zhao, J. Huang, D. Lumley, R. J. Stern, R. A. Dunn, A. F. Arnulf, and J. Ma (2024), Asymmetric magma plumbing system beneath Axial Seamount based on full waveform inversion of seismic data, Nat Commun, 15, 4767, doi:10.1038/s41467-024-49188-y.

 

ONLINE DATA DISPLAYS

Axial Seamount Earthquake Catalog (UW): http://axial.ocean.washington.edu/

Real-time, high-precision earthquake catalog (Lamont): https://axialdd.ldeo.columbia.edu/

Plots of real-time data from OOI Bottom-Pressure-Tilt & Seafloor CTD instruments: https://axial.ceoas.oregonstate.edu/index.html

Blog to chronicle eruption forecasts at Axial Seamount https://axial.ceoas.oregonstate.edu/axial_blog.html